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We report a transition from traveling to standing domain walls in a parametrically forced two-dimensional
oscillatory Belousov-Zhabotinsky chemical reaction in 4:1 resonance. Our experimental results demonstrate
spatiotemporal solutions not predicted by previous analytic results of the complex Ginzburg-Landau amplitude
equation and numerical results from reaction-diffusion models. In addition to the stationary � fronts at high
forcing amplitudes, the 4:1 resonant patterns we observe include stationary � /2 fronts.
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I. INTRODUCTION

When a spatially extended system has multiple equivalent
states, e.g., the spin states in a magnetic system �1�, the ori-
entation of liquid crystals �2�, or the phases of light in an
optical cavity �3�, the system can form spatial domains of
distinct states separated from each other by domain walls. In
nonequilibrium systems, traveling domain wall solutions can
be asymptotically stable �4� because the dynamics are not
governed by energy minimization. Transitions between trav-
eling and stationary waves in periodically forced oscillatory
systems have been studied, for example, in nematic liquid
crystals and binary mixture convection �5�, and theoretically
using amplitude equations �6� and reaction-diffusion equa-
tions �7�. In this paper, we report on an experimental dem-
onstration of a bifurcation from traveling to stationary do-
main walls in the 4:1 resonant Belousov-Zhabotinsky �BZ�
chemical reaction. The stationary domain walls we observe
are not yet found in analysis of the forced complex
Ginzburg-Landau �FCGL� equation or reaction-diffusion
models �8,9�.

We observe these stationary 4:1 resonant fronts in a time-
periodic quasi-two-dimensional �2D� BZ chemical reaction
that is externally forced with a frequency close enough to
four times its natural oscillation frequency to cause the reac-
tion to become phase synchronized to 1

4 the forcing fre-
quency. The result is a subharmonic 4:1 resonance character-
ized by a response frequency that is exactly 1

4 of the forcing
frequency and four distinct but equivalent temporal oscilla-
tions shifted in phase by � /2 and separated in space by
domain walls. The strength of the external forcing is the
control parameter; the change in stability from traveling to
stationary walls occurs as the strength of the external forcing
is increased. A large forcing strength results in standing
waves, while a small forcing strength results in traveling
waves.

The bifurcation we report is similar to the well known
nonequilibrium Ising-Bloch �NIB� bifurcation found in 2:1
resonance, where stationary Ising walls become unstable to
traveling Bloch walls �4,10,11�. For both the NIB and the
bifurcation in 4:1 resonance, the temporal dynamics of the
domain walls are intrinsically linked with the instantaneous

spatial structure. Domain walls that are stationary in time are
characterized by the existence of a zero-amplitude node in
space while domain walls that travel do not have a spatial
node.

The details of the experimental setup, data acquisition,
and data analysis are in Secs. II and III. Our experimental
observations are given in Sec. IV. We compare these to ex-
isting theoretical work in Sec. V and demonstrate the exis-
tence of a spatiotemporal solution in our experiments not
previously predicted by either the FCGL or reaction-
diffusion equations.

II. EXPERIMENTAL SETUP

We use the same BZ reactor setup reported in �12–14�.
The reaction takes place in a thin porous Vycor glass mem-
brane sandwiched between two chemical reservoirs. The
glass membrane is 0.4 mm thick and 22 mm in diameter.
Reagents diffuse homogeneously from the continuously
stirred reservoirs into the glass through its two faces. The
chemical concentrations in one reservoir are 0.8M sulfuric
acid, 0.184M potassium bromate, and 0.001M tris�2,
2�-bipyridyl�dichlororuthenium�II�hexahydrate; and in the
other 0.8M sulfuric acid, 0.184M potassium bromate, 0.32M
malonic acid, and 0.3M sodium bromide. The pattern wave-
length is �0.5 mm while the membrane is 0.4 mm thick, so
the pattern is quasi-two-dimensional. We use a ruthenium-
catalyzed version of the reaction with reagent concentrations
such that the reaction is oscillatory. The natural period of
spatially homogeneous oscillations is roughly 34 s.

The ruthenium catalyst of the BZ chemical reaction is
light sensitive in the visible range �15�. To force the system,
we apply time-periodic spatially uniform pulses of light to
the membrane. The particular effects of light using the same
reactor setup we use here have been described previously
�14�. The parametric forcing is applied using a computer-
controlled commercial video projector.

We image the reaction by passing spatially homogeneous
low-intensity light through the membrane, and measure
the relative intensity of the transmitted light �optical
density� using a charge-coupled device �CCD� camera
��13 pixels /mm� bandpass filtered from 420 to 500 nm.
Regions of the glass membrane that contain Ru�II� absorb
light at 451 nm, so regions of high intensity have a lower
concentration of Ru�II�. We create a temporal movie of the*alin@phy.duke.edu
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ruthenium oscillations by capturing frames from the camera
every 2 s.

III. DATA ANALYSIS

We quantify the temporal oscillations using the complex
Fourier amplitude A�t ,x��=rei�, where r is the oscillation
magnitude and � is the �relative� phase. A complex plane
portrait is constructed as in previous work �13� by plotting
the point A in the complex plane at a fixed time for each
pixel in the movie. An example of complex plane portraits
can be seen in the left column of Fig. 1. We visualize the
pattern in real space by plotting the phase � at each pixel �see
the center column of Fig. 1�. The usefulness of A is evident
by the topological change in the complex plane portrait from
a square for the traveling four-phase pattern �top� at low
forcing strength to a cross for the stationary four-phase pat-
tern �bottom� at higher forcing strength. Interpretations of the
complex plane portraits are given in Secs. IV and V.

We obtain the complex Fourier amplitude from the ex-
perimental data following previously successful methods
�13�. For clarity we include here the explicit transformation
from the experimental data to the complex amplitude.

In the optical density measurements captured with a CCD
camera, the time-varying intensity at a single pixel is propor-
tional to the time-dependent chemical concentration at that
pixel. To extract the complex amplitude of the temporal
chemical oscillation at each pixel we use a Fourier analysis
to filter in frequency space in the following way. The inten-
sity of transmitted light C is measured at discrete intervals
nT, where n=0,1 , . . . ,N−1 and T=2 s. We use a discrete

Fourier transform to obtain the frequency of this signal, C̃, at
frequencies m�, m=0,1 , . . . ,N−1, �= �2T�N−1��−1:

C̃�m�,x�� = �
k=0

k=N−1

C�kT,x��e−2�imk/N. �1�

The inverse transform is carried out only for frequencies
within an interval spanning the resonance frequency,
(�n−n0�� , �n+n0��), and the oscillation at the resonance
frequency, n�, is divided out:

A�kT,x�� =
e−2�ink/N

N
�

m=n−n0

m=n+n0

C̃�m�,x��e2�imk/N, �2�

leaving the complex amplitude A=rei�. We choose the filter
width just large enough to observe any slow changes in the
magnitude and phase of the oscillations that contributes to
Fourier components at frequencies slightly above and below
the resonance frequency. It is important to capture the slow
changes in the complex amplitude as they will be present as
a result of traveling waves.

IV. EXPERIMENTAL RESULTS

We have observed in our experimental system a transition
from traveling to standing domain walls. A traveling pattern
similar to those reported previously �9� is shown in Fig. 1
�top row�. The traveling waves form four armed rotating spi-
rals shown by the four shades of gray in the real space im-
age. Each of the four arms oscillates at the same frequency
but at distinct phases that differ from their spatial neighbors
by � /2—thus the walls between them are called “� /2
walls.” The second row of Fig. 1 shows a standing wave
pattern at 4:1 resonance. This pattern occurs for larger exter-
nal forcing strengths than the traveling wave. The domain
walls in this pattern are stationary �16�, all four phases are
present, and neighboring domains differ by either � or � /2.
That is, there are both stationary � and � /2 walls.

The transition from traveling to standing patterns is most
strikingly observed in the complex plane portraits �see the
left column of Fig. 1�. The traveling waves form a square
pattern in the complex plane with the majority of the pattern
contributing to the four equivalent phases at the corners of
the square. The standing wave forms a cross pattern in the
complex plane. The majority of the pattern is at high ampli-
tude, but the domains are connected by walls with zero-
amplitude oscillations. The topological structure seen in the
complex plane portrait snapshots is intrinsically linked with
the traveling and standing wave temporal dynamics of each
pattern.

The complex plane portraits reveal both the fourfold sym-
metry of the four stable states and the spatial structure of
domain walls between them. For the traveling pattern, do-
mains contribute to the corners of the square, which oscillate
at the four phase-locked phases, and domain walls contribute
to the sides of the square, which oscillate out of phase with
the resonant response. As the spatial pattern is traversed from
one domain to the next at a snapshot in time, there is a
continuous rotation of the phase. For successive snapshots in
time, the domain wall travels, and the points along the side
of the square move into one of the corners while a few points
from the corners move into the sides. As successive domain
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FIG. 1. �a�, �d� Complex Fourier coefficient A, given by Eq. �2�,
is plotted as a point in the complex plane for each pixel from the
camera data. The absolute scale of the axes is arbitrary, but is the
same in �a� and �d�. �b�, �e� Phase of the complex amplitude A is
with a periodic gray scale. The axes are the real space axes from the
2D experiment. �a�–�c� 4:1 traveling pattern at low forcing ampli-
tude. Phase image is 5.7�5.7 mm2. �d�–�f� Standing wave pattern
in the 4:1 resonance. The complex amplitude has a zero-amplitude
node separating spatial domains. Phase image is 11.9�11.9 mm2.
Chemical conditions are given in Sec. II.
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walls pass a particular pixel in the image, the point in the
complex plane portrait representing that pixel travels along
the sides of the square stopping in each corner before the
next domain wall passes.

The spatial structure and dynamics of the standing walls
revealed by the complex plane portrait differ significantly
from those of the traveling walls. Domain walls in the stand-
ing pattern connect neighboring domains through zero am-
plitude nodes. Instead of the continuous change in the oscil-
lation phase observed in the traveling patterns, the phase
changes abruptly by � or � /2. Successive snapshots in time
reveal that the domain walls are stationary—points in the
complex remain at the same phase. The standing domain
walls are formed depending on the essentially random initial
conditions of the experiment. There is no long-range spatial
correlation for these domain walls. This is in contrast with
the traveling walls, which are organized as spiral patterns
around a pacemaker center.

V. DISCUSSION

Theoretical results have never reported the cross shape in
Fig. 1 �bottom� that we observe in our experiments. Both
reaction-diffusion equations and the FCGL have been used to
show the transition from traveling to standing waves and in
both cases only stationary � walls are reported as asymptoti-
cally stable beyond the transition to standing waves �8�.
While it is possible to have a cross shape complex plane
portrait made of two � walls, it is not possible to arrange the
walls in real space without requiring a stationary � /2 wall as
well. In the experiment, we observe stationary � /2 walls in
addition to both types of � walls.

We have reproduced the simulations reported in �9� for
the FitzHugh-Nagumo equations in order to clearly compare
the results of the theoretical approach to our experimental
results �17�. The results of this simulation can be seen in Fig.
2. Similar to the experiment, traveling patterns in the simu-
lation appear as four armed spirals where neighboring arms
are shifted in phase by � /2. The walls that separate these
domains oscillate out of phase with the resonance response.
The resulting shape in the complex plane is a square. Stand-
ing wave patterns consist of domains shifted by �. The �
walls have a zero-amplitude node between the two uniformly
oscillating spatial regions and everywhere oscillate with the

resonant phase. Unlike in the experiment, stationary � /2
walls are not present in the simulation.

The stability of � and � /2 wall solutions has been studied
analytically using the FCGL by considering the related gra-
dient problem �8�. Figure 2�c� shows the four resonant states
of complex amplitude 1, i, −1, and −i with phases 0, � /2, �,
and 3� /2, respectively, as filled circles. The solution in
space connecting two states was given in �8�; for the � /2
wall �dashed line�,

A�x� =
1

2
�1 + i − �1 − i�tanh�x�� , �3�

and for the � walls �solid and dotted lines�,

A�x� = � tanh�x� �− 1 → 1,�1� , �4�
i tanh�x� �− i → i,�2� . �5�

The standing wave patterns at large forcing strength in the
experiment deviate from the analytic predictions. We observe
� /2 walls that do not fit the form in Eq. �3� and Fig. 2�c�.
The stationary � /2 walls in the experiment do not connect
the states 1 and i with a straight line in the complex plane, as
depicted by the dashed line representing the � /2 wall in Fig.
2�c�. Instead, they follow first the dotted line coinciding with
the � wall labeled �2 and at the origin begin to follow the
solid line coinciding with the other � wall. That is, the state
1 is connected to the state i by following the wall �2 from 1
to the origin and following the wall �1 from the origin to i.
Explicitly,
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FIG. 2. �a� Traveling spiral waves in the FitzHugh-Nagumo
simulation. �b� Standing wave pattern at larger forcing strength.
FitzHugh-Nagumo parameters are the same as in �9�. �c� Schematic
of the complex plane representation of the four equivalent states
and spatial solutions connecting them.
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FIG. 3. �Color online� In all plots the dashed curve is the real
part of the complex amplitude A and the solid curve is the imagi-
nary part. Top: Experimental traveling �a� and stationary �b� � /2
walls. The scale on the vertical axes is arbitrary, but it is the same in
both �a� and �b�. �c� Theoretical � /2 wall given in Eq. �3� obtained
by solving the related gradient case. �d� Proposed form of the sta-
tionary � /2 wall made piecewise from two � walls, Eq. �6�. This
solution has a node at the center, as we observe in the experiment.
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A�x� = �− tanh�x� for x � 0,

i tanh�x� for x � 0.
� �6�

A�x� is a wall solution of the gradient case, except at the
origin, where it is not differentiable.

A comparison of the observed experimental walls and
their theoretical counterparts as a function of space is given
in Fig. 3. The real and imaginary parts of the complex am-
plitude are shown for the experiment in the top row, the
analytically calculated � /2 wall in the bottom left, and the
form of a � /2 wall given in Eq. �6� in the bottom right.

Because the presence of a node in the complex amplitude
where both the real and imaginary parts are zero is directly
linked with a stationary wall, finding wall solutions such as
the kind in Eq. �6� in the theory may lead to a more complete
understanding of the observed patterns.
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